
PHYSICAL REVIEW E DECEMBER 2000VOLUME 62, NUMBER 6
Stability of postulated, self-similar, hydrodynamic blowup solutions
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A solution with real time singularity is assumed to exist that is steady under a Leray-type normalization.
This solution is further assumed to be reached asymptotically ast→t0 in the renormalized plane, and thus can
be thought of as the leading behavior of an inner solution. Constraints due to conserved quantities like energy
are shown to be weakened in this scenario. In the wake region that trails the collapsing structure, it is shown
that eigenfunctions associated with initial conditions are stable and decay, allowing the attracting singular
solution to be shielded from details of the initial conditions. The parameters of the normalization aret0 , r 0 ,
v0 , l, anda, which are the critical time, the location of the singularity, the velocity of the singular point, a
scaling factor, and the scaling exponent of the velocity (t02t)a. The stability of the eigenfunctions of this
solution obtained from the perturbation of these parameters is also examined in this work. Perturbations in the
critical time and location are shown to be unstable whereas perturbations in velocity and scaling are not. The
condition that the amplitude of the unstable eigenfunctions vanishes determines the time and location of the
singularity.

PACS number~s!: 47.20.2k, 47.10.1g, 47.15.Ki
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I. INTRODUCTION

Numerical evidence from Grauer, Marliani, and Ger
aschewski@1#, Pelz and Gulak@2#, Pelz@3#, Boratav and Pelz
@4#, and Kerr@5# suggests that vortex collapse solutions
the equations of incompressible inviscid flow exhibit a s
gularity in real time. Whether a smooth initial flow develo
a singularity spontaneously in a finite time is a fundamen
question, since it signals a breakdown of the equations
motion.

As was suggested by Leray@6#, one possible route to
blowup that is amenable to analysis and computation is s
similar collapse. The description of a spherically symme
collapse should identify a combination of radial and tim
variables that is fixed in a collapsing wave structure t
reaches the origin in finite time. If the evolution of the co
lapse has self-similarity, the solution will appear steady
der a suitable change of variables. Greene and Boratav@7#
proposed such a renormalization based on the inverse t
pointwise blowup of vorticity result of Beale, Kato, and M
jda @8#. While the blowup solutions in general, and se
similar ones in particular, have not been proved to exist,
shall assume optimistically that they do in this paper, a
proceed to study the consequences of this assumption.

The structure of this kind of self-similar solution is lim
ited, however. Necˇas@9# showed for the Navier-Stokes equ
tions that there are no global Leray-type self-similarity so
tions v(x,t)5lV@x/(lAt02t)#/At02t, VeL3(R3), where
t0 is the critical time andl is a scaling constant. Tsai@10#
extended this work for certain types of local self-similar
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solution. Constantin@11# commented that inviscid flows
have very restricted scaling for global self-similarity.

Despite these restrictions,local self-similarity may exist
as the leading behavior of an inner solution to the Eu
equations. This solution would be approached asymptotic
as a critical time is approached and in the inner~renormal-
ized! variables. Nonzero outer boundary conditions, which
the global case lead to unbounded energies, for the in
problem can yield finite energy.

Under such conditions, the structure of the solution can
analyzed. In this paper, we assume that a local self-sim
solution exists and that under the associated renormaliza
a steady solution exists. We analyze how conservation l
affect such solutions. We show that the collapse solution
be attracting by showing that a large class of eigenfuncti
associated with initial conditions are stable and decay.
examine the linear stability of the steady renormalized fl
in terms of eigenfunctions associated with the parameter
the normalization. That the collapse solution be stable
attracting is important for realizability.

In particular, in Sec. II we review the renormalization a
introduce the linearized perturbation problem. In Sec. III
apply known conservation laws to the solution in the tra
formed plane to derive constraints. In Sec. IV we address
issue of an attracting solution by showing that modes fr
the initial conditions decay. In Sec. V we examine tho
eigenfunctions stemming from perturbations in the para
eters of the scaling transformation.

II. THE SCALING TRANSFORMATION

For completeness, we repeat some of the presentatio
Greene and Boratav@7#. We begin with the Euler equation
for incompressible flow in rotation form,
7982 ©2000 The American Physical Society
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]v
]t

5v3v2¹P, ~2.1!

wherev is the Eulerian representation of the fluid veloc
~which is solenoidal,¹•v50!, v5¹3v is the vorticity, and
P5p/r1v2/2 is the stagnation pressure with the densityr
51. The stagnation pressure is determined through the
dition that incompressibility is preserved by the flow,

DP5¹•~v3v!, ~2.2!

together with boundary conditions. Here they are chose
be consistent with a configuration in which the magnitud
and directions of the coarse-grained averages of the velo
and vorticity fields fall off rapidly toward infinity.

We now assume that a singular collapse occurs at s
time t0 , location in the interior of the flowr 0 , and velocity
v0 . In order to follow the development of this collapse, w
introduce the scaling transformation (r ,t)→(j,t), appropri-
ate for an amplifying, spherically symmetrical collapsin
wave,

j5
r 2r 01v0~ t02t !

l0~ t02t !12a ,

t5t2t0 ,

v5
l0

~ t02t !a V~j,t!1v0 ,

v5
1

t02t
¹j3V~j,t!,

P5
l0

2

~ t02t !2a P~j,t!1
l0

~ t02t !a v0•V~j,t!. ~2.3!

The quantitya is a scaling parameter that specifies the re
tive degree to which the wave is amplified as it is co
pressed. This transformation is similar to that proposed
Leray @6# for the Navier-Stokes equations; however,
found dissipation constrainsa to be one-half. The paramete
l0 represents invariance under choice of length scale; n
that l0 and a always occur together in the combinatio
l0(t02t)2a. Here j, V, and P are nondimensional whe
l0(t02t)2a is assigned the dimension of a velocity. The s
of equations~2.3! is a simple transformation of variable
from (r ,t,v,P) to (j,t,V,P) that contains no information
about the evolution of Eqs.~2.1! and ~2.2!. While the solu-
tions are not affected by this transformation of variables,
volume in phase space occupied by a set of solutions n
not be invariant. Thus the flow in function space of Eq.~2.1!
can be Hamiltonian while the flow of Eq.~2.4! is attracting.

Applying the renormalization Eq.~2.3! to Eq. ~2.1! we
find that the evolution in the transformed variables is giv
by

t
]

]t
V5aV1~12a!~j•¹j!V2V3~¹j3V!1¹jP.

~2.4!
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This result is independent of (r 0 ,t0 ,v0 ,l0) since the param-
eters in this transformation reflect invariance properties
Eqs.~2.1! and ~2.2!.

Rearranging, we arrive at the form that we shall use,

t
]

]t
V5~2a21!V2@V1~12a!j#3~¹j3V!

1¹j@P1~12a!j•V#, ~2.5!

with Eq. ~2.2! becoming

DjP5¹j•@V3~¹j3V!#. ~2.6!

Note that the right side of Eq.~2.5! has no explicit depen-
dence ont. Thus, if the right side vanishes, it vanishes for
t, and, from Eq.~2.3!, the evolution of Eqs.~2.1! and~2.2! is
singular for positivea. Steady solutions for which the righ
side of Eq.~2.5! vanishes will be denotedV0(j),P0(j). Sin-
gularity of the Euler flow follows from the existence o
steady solutions and does not depend on the algorithm
yielded this state nor on this steady state being an attracto
the flow of ~2.5!. As discussed in the Introduction, Eq.~2.5!
is valid in the inner region, and outer boundary conditio
(j→`), which could be on a spherically collapsing ba
should match the inner conditions of an outer solution.

The status of this flow as an attractor under the dynam
of Eq. ~2.1! can be assessed by evaluating eigenfunctions
eigenvalues obtained from linearization of the equations w
respect to small perturbations off the base solution (V0 ,P0).
Setting

V5V01eV8, P5P01eP8, ~2.7!

substituting Eq.~2.7! into Eqs.~2.5! and ~2.6!, and lineariz-
ing, we find thatV8 andP8 satisfy

t
]

]t
V85~2a21!V82@V01~12a!j#3~¹j3V8!

2V83~¹j3V0!1¹j@P81~12a!j•V8#

~2.8!

and

DjP85¹j•@V83~¹j3V0!#1¹j•@V03~¹j3V8!#.
~2.9!

Since the right side of these equations is not explicitlyt
dependent, the time dependence can be treated by sepa
of variables. Note that separation of variables can be e
ployed on such linear, homogeneous equations with ho
geneous boundary conditions. Denoting the separation c
stant byq and using an obvious notation to distinguish t
time-dependent portion of the eigenfunction, we are led

V8~j,t!5~2t!2qdV~j! ~2.10!

and

05~q12a21!dV2@V01~12a!j#3~¹j3dV!

2dV3~¹j3V0!1¹j@dP1~12a!j•dV#, ~2.11!
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so thatq is an eigenvalue. Perturbations grow if the real p
of q is positive fort→0. The behavior of the full basis o
eigenfunctions is necessary to assess the full stability of
steady solution (V0 ,P0).

SinceV0 and P0 are not known specifically, it is impos
sible to perform a complete stability analysis. We can, ho
ever, examine the growth of a certain subset of modes a
ciated with the parameters of the scaling transformat
~2.3!. This analysis is presented in Sec. V.

III. CONSTRAINTS FROM CONSERVATION LAWS

At this stage in the development we have two coordin
systems for treating the evolution, one fixed and the ot
contracting, together with differential equations to be sa
fied. We can expect that certain further constraints in
form of initial and boundary conditions will be required. I
this section the role played by conservation laws in supp
ing acceptability criteria is considered. In particular, this
cludes criteria for the choice ofa in Eq. ~2.3!.

We assume that there are nonsingular initial conditio
for Eqs.~2.1! and~2.2! that asymptotically show self-simila
collapse. By this we mean that, in the limit ast approaches
zero,V andP evolve to a steady solution to Eqs.~2.5! and
~2.6!. ThusV0 is defined as a limit, and the vanishing of th
right side of Eq.~2.5! is asymptotic in the limit of vanishing
t. That is,

V0~j!5 lim
t→0

V~j,t!. ~3.1!

Note that the freedom ofV(j,t) associated with the choic
of initial conditions is lost forV0 since the latter must satisf
the steady version of Eq.~2.5!. Thus information on initial
conditions is completely lost in finite time in taking the lim
of Eq. ~3.1!. It follows that extreme care is required in e
tracting information from conservation laws if corruption
this information is to be avoided.

In a physical problem with conserved energy, such as t
the form of the conserved energy generally plays a fun
mental role. From Eq.~2.1! we see that the conserved ener
is the volume integral of the square of the velocity in t
interior of a sphere, in the limit that the sphere is infini
Transforming this to the scaled variables of Eq.~2.3!, we
find for the kinetic energyE

E5 lim
r b→`

E
ur u,r b

1
2 v2dr5l0

5~ t02t !325a lim
jb→`

E
uju,jb

1
2 V2dj,

~3.2!

where

jb5
r b

l0~ t02t !12a . ~3.3!

The time-dependent factor on the right is a measure of
energy that is left behind in the wake of a collapsing wa
SinceV0 is a quantity of interest, it would be useful to re
place the scaled velocityV with V0 defined in Eq.~3.1! as a
limit t→t0 . Since energy is conserved, the last expressio
Eq. ~3.2! is independent of time and thus appears to be a
nable to the introduction of the limit of Eq.~3.1!. However,
t
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there are subtleties in taking the limit of (t02t) vanishing
while jb or r b becomes infinite. In particular, note thatjb
can approach infinity whiler b remains small. Thus the lim
iting volume can be quite different depending on the order
the limits of larger b and smallt02t. If the solution is self-
similar in all of R3, then energy conservation requiresa
53/5, a result suggested by Constantin@11# ~the length scal-
ing is 12a or 2/5! and by Pomeau@12#. However, we can
defineV0 as a limit holdingj fixed, and thus it is defined
only in a region ofr that has asymptotically vanishing vo
ume in the limit thatt2t0 vanishes. Information lying in the
region of finiter, where the energy resides, is lost in the lim
of vanishing t. Therefore, in the case of asymptotic se
similarity nothing can be learned aboutV0 from the conser-
vation of energy.

There are other conservation laws leading to differ
constraints on the solutions and thus to different plaus
choices of the value ofa. From conservation of circulation
we arrive at a scaling ofa51/2 without limiting procedures.
Indeed,

G5 R v•dr5l0
2~ t02t !122a R V•dj. ~3.4!

The invariance of this quantity is related to the Helmho
conservation laws.

Closely related to the circulation is the helicity. Thus
we define the conserved quantity

H5 lim
r b→`

E
ur u,r b

v•v dr

5l0
4~ t02t !224a lim

jb→`
E

uju,jb

V•¹j3V dj ~3.5!

in certain regimes, e.g., compact vorticity, this leads toa
51/2 as a preferred value. Greene and Boratav@7# showed
that the numerical results of@4# strongly favoreda51/2.

Finally, consider the conservation of mass. As with t
energy, Eq.~3.2!, mass must be left behind in the wake of
collapsing wave. Equation~2.5! contains terms that are
driven by the necessity of satisfying this condition quanti
tively.

IV. INDEPENDENCE FROM INITIAL CONDITIONS

In this section, we expand further on a collapse solut
being attracting and becoming independent from initial co
ditions. The solution for some timet,0 will contain the
solutionV0 as well as a part dependent on initial condition
The latter part of the solution will be shown to decay
collapsing coordinates ast→0.

We concentrate on the regime wherer is finite andt is
small. This region can be thought of as the wake of
collapsing wave. The wave region is characterized byj being
of order 1; thus, in the wake region, the quantityj is much
larger thanV0 , which is at mostO(1) everywhere. Applying
this limit to the eigenfunction relation Eq.~2.11!, it is seen
that to leading order the terms containingV0 become negli-
gible. Equation~2.11! yields
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dP50, ~q1a!dV1~12a!~j•¹jdV!50. ~4.1!

Expressing this in scaled spherical coordinates~r, u, f! we
find that ~u, f! enter only as parameters and do not sc
with the collapse. The scaled radial coordinate is denoted
r and scales asj in Eq. ~2.3!. This radial dependence can b
separated and solved to yield

dV5nn~u,f!r2n, ~4.2!

where

n5
q1a

12a
~4.3!

is another separation constant, related to the growth rateq by
q5n(12a)2a. Note that for 0,a,1, if n is negative,
thenq is also. Following Eq.~2.10!, we can construct the ful
eigenfunction as

V85nn~u,f!~2t!2qr2n. ~4.4!

The relevant modes for the wake region, those with nega
n, then decay ast→0 since the associatedq is also negative.

Translating back to the unscaled coordinates, we find
the eigenfunctions (2t)2qdV in the wake region become

v8;r 2nnn~u,f! ~4.5!

for r 0 and v0 zero. This can be understood as follows. R
gions where the evolution is slow should be taken to
essentially stationary during the last stages of collapse. T
Eq. ~4.5! represents a Taylor series representation of the
tial flow outside the collapse region. However, from the n
ture of the scaling transformation, the terms of this Tay
series are decaying eigenfunctions in the scaled coordin
Loss of information occurs ast→0. Thus the initial flow has
no influence on the evolution of the localized singulari
This is how information disappears ast vanishes.

V. STABILITY OF BLOWUP SOLUTIONS

We next examine the stability of the steady soluti
(V0 ,P0) of the renormalized dynamical equation, Eqs.~2.5!
and ~2.6!. Recall that the parameters of the steady solut
(V0 ,P0) are r 0 , t0 , v0 , andl0 . We shall look at the time
dependence of solutions with the transformation parame
slightly perturbed and under linearization.

To accomplish this, we introduce a transformation simi
to ~2.3!, (r ,t,v,P)→( j̃,t̃,Ṽ,P̃), but with different param-
eters, denoted by the subscript 1.

j̃5
r 2r 11v1~ t12t !

l1~ t121!12a ,

t̃5t2t1 ,

v5
l1

~ t12t !a Ṽ~ j̃,t̃ !1v1 ,

v5
1

t12t
¹j3Ṽ~ j̃,t̃ !,
e
y

e

at

-
e
us
i-
-
r
es.

.

n

rs

r

P5
l1

2

~ t12t !2a P̃~ j̃,t̃ !1
l1

~ t12t !a v1•Ṽ~ j̃,t̃ !. ~5.1!

Now let t15t01t8, v15v01v8, r 15r 01r 8, and l15l0
1l8, and eliminater ,t,v between Eqs.~2.3! and~5.1!. This
gives

Ṽ5
l0

l01l8 S t82t

2t D a

V2
~ t82t!a

l01l8
v8,

j5
l01l8

l0
S t82t

2t D 12a

j̃1
r 82v0t82v8~ t82t!

l0~2t!12a ,

t5 t̃1t8. ~5.2!

Thus, if V and P is a solution of Eqs.~2.5! and ~2.6!, then
Ṽ( j̃,t̃,t8,r 8,v8,l8) and P̃( j̃,t̃,t8,r 8,v8,l8) is also a solu-
tion of these equations. This follows since they both tra
form back to Eqs.~2.1! and ~2.2!. The two solutions are the
same if the parameters (r 8,t8,v8,l8) are zero, and are
nearby in a suitable normed space if they are small. In p
ticular, a Taylor series in the parameters is term by term
solution.

If we take the solution with vanishing primed paramete
to be the steady solutionV0(j),P0(j) of Eq. ~2.5!, then the
nearby solutions are eigenfunctions generated by pertu
tions in the transformation parameters. As a first exam
take all the primed parameters to vanish exceptt8. The lead-
ing terms in a Taylor series int8 are

Ṽ~ j̃,t̃,t8!5V0~j!1t8S ]Ṽ

]t8
D

t850

1¯ . ~5.3!

Using Eq.~5.2! the derivative term becomes

]Ṽ

]t8
5

]

]t8 F S t82t

2t D a

V0G
5

aV0

2t S t82t

2t D
t850

a21

1
]j

]t8
•

]V0

]j

5
1

2t FaV01~12a!j•
]V0

]j G . ~5.4!

Comparing to the expected form of the eigenfunctions in E
~2.10!, V(j,t)5V0(j)1e(2t)2qdV, we find that the un-
stable eigenvalue isq51 with the eigenvectoraV01(1
2a)j•]V0 /]j. The solution is unstable to perturbations
the critical time. The amplitude of the instabilitye is equal to
t8. This is a logical result since the collapse solution has o
particular critical time. Solutions formed with any transfo
mation using a different critical time appear unstable.

Turning to perturbations in the spatial location of the s
gularity, we again expect an instability. The Taylor series
r 8 nonzero is

Ṽ~ j̃,t̃,r 8!5V0~j!1r 8•S ]Ṽ

]t8
D

r 850

1¯ . ~5.5!

Again using Eq.~5.2! the derivative term becomes
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]Ṽ

]r 8
5

]j

]r 8
•

]V0

]j
52

1

~2t!12a

]V0

]j
. ~5.6!

The eigenvalue isq512a with the eigenvector]V0 /]j,
which is a growing mode ifa,1.

Sincel is a scaling parameter, perturbations do not yi
any time dependence. That is,q50 and the perturbation is
neutral, with eigenfunction given by

]Ṽ

]l8
52V0~j!1j

]V0

]j
. ~5.7!

Thus we can expect that there is a one-parameter famil
singular solutions, with the parameter being the size.

Finally, the response of the solution to perturbations
reference velocity should not be unstable due to Galil
invariance. Indeed for

Ṽ~ j̃,t̃,v8!5V0~j!2v8
~2t!a

l0
~5.8!

the derivative is

]Ṽ

]v8
5

~2t!a

l0
S ]V0

]j
11D . ~5.9!

Thus, the eigenvalue is2a and the eigenfunction is stable
a is positive.
ev
d

of

n
n

We see that the stability of the solution to changes of
parameters is solely based on the form of the normalizat
not of the governing equations.

VI. CONCLUSIONS

The purpose of this note is to discuss some general
tures of renormalization as applied to the problem of est
lishing the existence of singularities of Euler flow. In th
method a general collapsing coordinate frame is introduc
If this coordinate frame can be adjusted until the evolution
a portion of the initial velocity field appears to be fixed, th
the flow is singular. Then the question arises as to the sta
ity of the flow that is fixed in the collapsing coordinates.

The existence of a flow breaks the continuous symmet
associated with the origin of time and space coordinates.
show the close relation of the localization of the singular
in time and space with the existence of instabilities of t
flow. The instabilities only appear when there is some er
in the estimated time and place of the singularity.

We also have identified large families of stable eigenfu
tions. They provide a mechanism for independence of
singularity from details of the initial conditions. We als
discuss the idea of an asymptotic self-similar solution. C
servation of energy, as a restriction on scaling, is ruled o
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