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Stability of postulated, self-similar, hydrodynamic blowup solutions
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A solution with real time singularity is assumed to exist that is steady under a Leray-type normalization.
This solution is further assumed to be reached asymptotically-dg in the renormalized plane, and thus can
be thought of as the leading behavior of an inner solution. Constraints due to conserved quantities like energy
are shown to be weakened in this scenario. In the wake region that trails the collapsing structure, it is shown
that eigenfunctions associated with initial conditions are stable and decay, allowing the attracting singular
solution to be shielded from details of the initial conditions. The parameters of the normalizatign age
vo, A, anda, which are the critical time, the location of the singularity, the velocity of the singular point, a
scaling factor, and the scaling exponent of the velocity-(t)“. The stability of the eigenfunctions of this
solution obtained from the perturbation of these parameters is also examined in this work. Perturbations in the
critical time and location are shown to be unstable whereas perturbations in velocity and scaling are not. The
condition that the amplitude of the unstable eigenfunctions vanishes determines the time and location of the
singularity.

PACS numbe(s): 47.20—k, 47.10:+g, 47.15.Ki

[. INTRODUCTION solution. Constantin[11] commented that inviscid flows
have very restricted scaling for global self-similarity.

Numerical evidence from Grauer, Marliani, and Germ- Despite these restriction&cal self-similarity may exist
aschewskj1], Pelz and Gulak2], Pelz[3], Boratav and Pelz as the leading behavior of an inner solution to the Euler
[4], and Kerr[5] suggests that vortex collapse solutions ofequations. This solution would be approached asymptotically
the equations of incompressible inviscid flow exhibit a sin-as a critical time is approached and in the infrenormal-
gularity in real time. Whether a smooth initial flow develops ized variables. Nonzero outer boundary conditions, which in
a singularity spontaneously in a finite time is a fundamentathe global case lead to unbounded energies, for the inner
question, since it signals a breakdown of the equations aproblem can yield finite energy.
motion. Under such conditions, the structure of the solution can be

As was suggested by Lerd], one possible route to analyzed. In this paper, we assume that a local self-similar
blowup that is amenable to analysis and computation is selfsolution exists and that under the associated renormalization
similar collapse. The description of a spherically symmetrica Steady solution exists. We analyze how conservation laws
collapse should identify a combination of radial and timeaffect such solutions. We show that the collapse solution can
variables that is fixed in a collapsing wave structure thaie attracting by showing that a large class of eigenfunctions
reaches the origin in finite time. If the evolution of the col- associated with initial conditions are stable and decay. We
lapse has self-similarity, the solution will appear steady un€xamine the linear stability of the steady renormalized flow
der a suitable change of variables. Greene and Boif@hv in terms of eigenfunctions associated with the parameters of
proposed such a renormalization based on the inverse tim#)e normalization. That the collapse solution be stable and
pointwise blowup of vorticity result of Beale, Kato, and Ma- attracting is important for realizability.
jda [8]. While the blowup solutions in general, and self- In particular, in Sec. Il we review the renormalization and
similar ones in particular, have not been proved to exist, wéntroduce the linearized perturbation problem. In Sec. Il we
shall assume optimistically that they do in this paper, ancapply known conservation laws to the solution in the trans-
proceed to study the consequences of this assumption. ~ formed plane to derive constraints. In Sec. IV we address the

The structure of this kind of self-similar solution is lim- issue of an attracting solution by showing that modes from
ited, however. Neas[9] showed for the Navier-Stokes equa- the initial conditions decay. In Sec. V we examine those
tions that there are no global Leray-type self-similarity solu-eigenfunctions stemming from perturbations in the param-
tions v (x,t)=AV[x/(Ato—t)1/\to—t, VeL3(R3), where eters of the scaling transformation.
to is the critical time and\ is a scaling constant. Tsgl0]
extended this work for certain types of local self-similarity Il THE SCALING TRANSFORMATION
For completeness, we repeat some of the presentation of
*Electronic address: jmgreene@ucsd.edu Greene and Borata\?]. We begin with the Euler equations
TElectronic address: pelz@jove.rutgers.edu for incompressible flow in rotation form,
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A This result is independent of {,tg,vq,\o) Since the param-
5 ~vXe—VIL (2.)  eters in this transformation reflect invariance properties of
Egs.(2.2) and(2.2).

wherev is the Eulerian representation of the fluid velocity Rearranging, we arrive at the form that we shall use,

(which is solenoidaly -v =0), =V Xuv is the vorticity, and

. . . J
I1=p/p+v?/2 is the stagnation pressure with the dengity T—=V=(2a—1)V-[V+(1—a)&]X(V:XV)
=1. The stagnation pressure is determined through the con- it
dition that incompressibility is preserved by the flow, +V[P+(1—a)¢-V], (2.5
ATl=V: (v X w), (22 with Eq. (2.2) becoming
together with boundary conditions. Here they are chosen to AP=V[VX(V:XV)]. (2.6

be consistent with a configuration in which the magnitudes

and directions of the coarse-grained averages of the velocitMote that the right side of Eq2.5 has no explicit depen-

and vorticity fields fall off rapidly toward infinity. dence onr. Thus, if the right side vanishes, it vanishes for all
We now assume that a singular collapse occurs at somg and, from Eq(2.3), the evolution of Eqs(2.1) and(2.2) is

time tq, location in the interior of the flow,, and velocity  singular for positivea. Steady solutions for which the right

vg. In order to follow the development of this collapse, we side of Eq.(2.5) vanishes will be denoted,(&),Pq(£). Sin-

introduce the scaling transformation,{)— (&, 7), appropri-  gularity of the Euler flow follows from the existence of

ate for an amplifying, spherically symmetrical collapsing steady solutions and does not depend on the algorithm that

wave, yielded this state nor on this steady state being an attractor of
the flow of (2.5). As discussed in the Introduction, E@.5
r—rotuvg(to—t) is valid in the inner region, and outer boundary conditions
- T No(te—t)I (é—<0), which could be on a spherically collapsing ball,
should match the inner conditions of an outer solution.
r=t—to, The status of this flow as an attractor under the dynamics
of Eq.(2.1) can be assessed by evaluating eigenfunctions and
N eigenvalues obtained from linearization of the equations with
v= 0 —V(&,7)+vo, respect to small perturbations off the base solutigg), Py).
(to—1) Setting

wzﬁvng(g,r), V=Vy+eV', P=Py+eP’, 2.7
0 substituting Eq(2.7) into Egs.(2.5 and(2.6), and lineariz-
2 N ing, we find thatv’ andP’ satisfy
= ﬁﬁp(g,wr ﬁv(yV(f,T). 2.3

° ° ooV = (2a= 1)V = [Vot (1= @) X (VX V)
The quantitya is a scaling parameter that specifies the rela-
tive degree to which the wave is amplified as it is com- V' X(VXVg)+ V[P +(1-a)é- V']
pressed. This transformation is similar to that proposed by
Leray [6] for the Navier-Stokes equations; however, he
found dissipation constraingto be one-half. The parameter 5.4
\g represents invariance under choice of length scale; note
that Ao and « always occur together in the combination AP =V [V X(VX V) ]+ Ve [VoX (VX V)]
No(to—t) ~*. Here &, V, and P are nondimensional when (2.9
Mo(tg—1t) @ is assigned the dimension of a velocity. The set
of equations(2.3) is a simple transformation of variables Since the right side of these equations is not explicitly
from (r,t,v,II) to (&,7,V,P) that contains no information dependent, the time dependence can be treated by separation
about the evolution of Eqg2.1) and(2.2). While the solu-  of variables. Note that separation of variables can be em-
tions are not affected by this transformation of variables, theloyed on such linear, homogeneous equations with homo-
volume in phase space occupied by a set of solutions neegeéneous boundary conditions. Denoting the separation con-
not be invariant. Thus the flow in function space of E2j1) stant byq and using an obvious notation to distinguish the
can be Hamiltonian while the flow of E¢2.4) is attracting. ~ time-dependent portion of the eigenfunction, we are led to

Applying the renormalization Eq(2.3) to Eqg. (2.1) we

find that the evolution in the transformed variables is given V/(&,7)=(—71)"90V(§) (2.10

by

(2.9

and

TO,%_V=a/V+(1—a)(§~V§)V—VX(V§XV)+V§P. 0=(q+2a—1)8V—[Vo+ (1= a){]X (VX 8V)
(2.4 — VX (VX Vo) + V[ 0P+(1—a)¢ 8V], (2.1)
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so thatqg is an eigenvalue. Perturbations grow if the real partthere are subtleties in taking the limit ofy(-t) vanishing

of q is positive forr—0. The behavior of the full basis of

while &, or r, becomes infinite. In particular, note thé&g

eigenfunctions is necessary to assess the full stability of thean approach infinity while, remains small. Thus the lim-

steady solution Yy, Py).
SinceV, and P, are not known specifically, it is impos-

iting volume can be quite different depending on the order of
the limits of larger,, and smallt,—t. If the solution is self-

sible to perform a complete stability analysis. We can, how-similar in all of R®, then energy conservation requires
ever, examine the growth of a certain subset of modes asse=3/5, a result suggested by Constaiffid] (the length scal-
ciated with the parameters of the scaling transformatioring is 1— a or 2/5 and by Pomeall12]. However, we can

(2.3. This analysis is presented in Sec. V.

IIl. CONSTRAINTS FROM CONSERVATION LAWS

defineV, as a limit holdingé fixed, and thus it is defined
only in a region ofr that has asymptotically vanishing vol-
ume in the limit that —ty vanishes. Information lying in the
region of finiter, where the energy resides, is lost in the limit

At this stage in the development we have two coordinatgy yanishing . Therefore, in the case of asymptotic self-

systems for treating the evolution, one fixed and the othegjmijarity nothing can be learned abodg from the conser-
contracting, together with differential equations to be satisy 5tion of energy.

fied. We can expect that certain further constraints in the There are other conservation laws leading to different

form of initial and boundary conditions will be required. In

constraints on the solutions and thus to different plausible

this section the role played by conservation laws in supplyzhoices of the value of. From conservation of circulation,

ing acceptability criteria is considered. In particular, this in-

cludes criteria for the choice @i in Eq. (2.3).

we arrive at a scaling ok = 1/2 without limiting procedures.
Indeed,

We assume that there are nonsingular initial conditions

for Egs.(2.1) and(2.2) that asymptotically show self-similar
collapse. By this we mean that, in the limit aspproaches
zero,V andP evolve to a steady solution to Eg&.5 and

(2.6). ThusV, is defined as a limit, and the vanishing of the

right side of Eq.(2.5) is asymptotic in the limit of vanishing
7. That is,

Vo(é§)=Ilim V(&,7).

7—0

(3.9

Note that the freedom o¥(&,r) associated with the choice
of initial conditions is lost foiV since the latter must satisfy
the steady version of Eq2.5). Thus information on initial
conditions is completely lost in finite time in taking the limit
of Eq. (3.1). It follows that extreme care is required in ex-
tracting information from conservation laws if corruption of
this information is to be avoided.

r= jgv-drz)\g(to—t)1*2“§v-d§. (3.9

The invariance of this quantity is related to the Helmholtz
conservation laws.

Closely related to the circulation is the helicity. Thus if
we define the conserved quantity

f v-wdr
Irl<rp

=Ng(to—1)2 4 lim
.fb*»oc

H= lim

fb—mo
f V-V XVdé (35
[€l<&p

in certain regimes, e.g., compact vorticity, this leadsato

In a physical problem with conserved energy, such as this= 1/2 as a preferred value. Greene and Bor&@vshowed
the form of the conserved energy generally plays a fundathat the numerical results ¢#] strongly favoreda=1/2.
mental role. From Eq2.1) we see that the conserved energy  Finally, consider the conservation of mass. As with the
is the volume integral of the square of the velocity in theenergy, Eq(3.2), mass must be left behind in the wake of a

interior of a sphere, in the limit that the sphere is infinite.

Transforming this to the scaled variables of E}.3), we
find for the kinetic energye

E= Iimj Fv2dr=\3(tg—1t)3~ 5« Iimj $V2de,
rp—®° ‘r|<rb §b~>00 |§|<§b
(3.2
where
.
b 3.3

collapsing wave. Equatiorf2.5 contains terms that are
driven by the necessity of satisfying this condition quantita-
tively.

IV. INDEPENDENCE FROM INITIAL CONDITIONS

In this section, we expand further on a collapse solution
being attracting and becoming independent from initial con-
ditions. The solution for some time<0 will contain the
solutionV, as well as a part dependent on initial conditions.
The latter part of the solution will be shown to decay in
collapsing coordinates as—0.

We concentrate on the regime wherés finite andr is

The time-dependent factor on the right is a measure of themall. This region can be thought of as the wake of the
energy that is left behind in the wake of a collapsing wave collapsing wave. The wave region is characterized bging

SinceV, is a quantity of interest, it would be useful to re-
place the scaled velocity with V, defined in Eq(3.1) as a

of order 1; thus, in the wake region, the quanttis much
larger thanV, which is at mosOD(1) everywhere. Applying

limit t—ty. Since energy is conserved, the last expression itthis limit to the eigenfunction relation E@2.11), it is seen
Eq. (3.2 is independent of time and thus appears to be amethat to leading order the terms containig become negli-

nable to the introduction of the limit of Eq43.1). However,

gible. Equation(2.1)) yields
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SP=0, (q+a)dV+(1—a)(&VV)=0. (4.1 AN A1 -
L= P(&7)+ Wvl'V(&T)- (5.1
Expressing this in scaled spherical coordindjgst, ¢) we 1 1
find that (6, ¢) enter only as parameters and do not scale\qy, et t.=t.+t’ v1=vat0". F1=ra+r". and A =\
with the collapse. The scaled radial coordinate is denoted by / andlelir%inaté tl b&weén |15 % 3 and(5 11Thig
p and scales agin Eq. (2.3). This radial dependence can be ’ Y as2-3 ®.D.

; ives
separated and solved to yield g
_ - No [(t'—T7\¢ (t'—7)¢°
oV=v,(6, " 4.2 = - !
Vn( ¢)P ( ) V )\0+)\, _’T) V )\0+)\I v,
where
Ao+ N/ t'—7)1“~ r'—ovot'—v'(t'—7)
+a - — i« '
n= q_ 4.3 Ao T No(—7)
1-«a

T=T+t'. (5.2
is another separation constant, related to the growthorbge
g=n(1—a)—a. Note that for <a<1, if n is negative, Thus, ifV andP is a solution of Eqs(2.5 and (2.6), then
thenq is also. Following Eq(2.10), we can construct the full  V/(¢7.t" r" v’ ,\'") and P(£7,t',r",v’,\') is also a solu-
eigenfunction as tion of these equations. This follows since they both trans-
L “q.-n form back to Eqs(2.1) and(2.2). The two solutions are the
Vi=va(0,4)(=7)"p " 44 same if the parametersr(t',v’,\') are zero, and are
earby in a suitable normed space if they are small. In par-
icular, a Taylor series in the parameters is term by term a
olution.
If we take the solution with vanishing primed parameters
to be the steady solutiovy(£),Po(€) of Eq. (2.5), then the
0/ ~1 "u,(6,0) (4.5  hearby solutions are eigenfunctions generated by perturba-
tions in the transformation parameters. As a first example,
for rq andv, zero. This can be understood as follows. Re-take all the primed parameters to vanish exdépthe lead-
gions where the evolution is slow should be taken to beng terms in a Taylor series iti are
essentially stationary during the last stages of collapse. Thus
Eq. (4.5 represents a Taylor series representation of the ini-
tial flow outside the collapse region. However, from the na-
ture of the scaling transformation, the terms of this Taylor
series are decaying eigenfunctions in the scaled coordinategsing Eq.(5.2) the derivative term becomes
Loss of information occurs as— 0. Thus the initial flow has
=
— | Vo

The relevant modes for the wake region, those with negativ

n, then decay as— 0 since the associatefis also negative.
Translating back to the unscaled coordinates, we find that

the eigenfunctions- 7) ~96V in the wake region become

V(EF)=Vo(&)+t/

0\7) + (5.3
P :

no influence on the evolution of the localized singularity. N 9
This is how information disappears ayvanishes. - =7

at’  at’
V. STABILITY OF BLOWUP SOLUTIONS _ aVy ( t'— 7') a1 N &€ IV
We next examine the stability of the steady solution T\ T o 98
(Vo,Py) of the renormalized dynamical equation, E(¢&5) Py
and (2.6). Recall that the parameters of the steady solution =—|aVo+(1l—a)é- _0}_ (5.4)
(Vo,Pg) arerg, tg, vg, andry. We shall look at the time -7 23

dependence of solutions with the transformation paramete
slightly perturbed and under linearization.
To accomplish this, we introduce a transformation similar

réomparing to the expected form of the eigenfunctions in Eq.
(2.10, V(&,7)=Vy(E) +e(—7) 968V, we find that the un-
e ) _ stable eigenvalue igj=1 with the eigenvectoraVy+ (1

to (2.3, (r.t,v,I1)—(&7,V,P), but with different param-  _ )¢ 5v/a¢. The solution is unstable to perturbations in
eters, denoted by the subscript 1. the critical time. The amplitude of the instabiligis equal to

ot —1) t’. This is a logical result since the collapse solution has one

&= — particular critical time. Solutions formed with any transfor-
Ai(ti—1) mation using a different critical time appear unstable.
_ Turning to perturbations in the spatial location of the sin-
T=t—1, gularity, we again expect an instability. The Taylor series for
r’ nonzero is
N e
v= (tl_t)av(§17)+vlv

V(EFr)=Vo(&)+r'

NV
—) + (59
or

r'=0

1 - ~
@ ti—t VexVIET), Again using Eq(5.2) the derivative term becomes
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N aE oV, 1 N, We see that the stability of the solution to changes of the
=T = ——71—a - (5.6 parameters is solely based on the form of the normalization,
ar' ar' 9 (-t 9

3 T 3 not of the governing equations.

The eigenvalue igj=1— « with the eigenvectowV,/d¢,
which is a growing mode itv<<1.

Since\ is a scaling parameter, perturbations do not yield VI. CONCLUSIONS
any time dependence. That =0 and the perturbation is
neutral, with eigenfunction given by The purpose of this note is to discuss some general fea-

tures of renormalization as applied to the problem of estab-

(9_\/0 lishing the existence of singularities of Euler flow. In this
dE " method a general collapsing coordinate frame is introduced.

) ~If this coordinate frame can be adjusted until the evolution of

Thus we can expect that there is a one-parameter family of hortion of the initial velocity field appears to be fixed, then
singular solutions, with the parameter being the size.  hq fiow is singular. Then the question arises as to the stabil-

Finally, the response of the solution to perturbations iy of the fiow that is fixed in the collapsing coordinates.

irr?\f/(:\rr(ia;r?c?evfr:ggg)é ?QrOUId not be unstable due to Galilean The existence of a flow breaks the continuous symmetries
' associated with the origin of time and space coordinates. We

(—7)” show the close relation of the localization of the singularity
(5.9 in time and space with the existence of instabilities of the

oV
——=—Vo(§)+¢

I\’ - (57)

V(EF0")=Vo(§)—v'

Mo flow. The instabilities only appear when there is some error
the derivative is in the estimated time and place of the singularity.
We also have identified large families of stable eigenfunc-
N (=1 Vo tions. They provide a mechanism for independence of the
Er No ((9_§+ ) (5.9 singularity from details of the initial conditions. We also

discuss the idea of an asymptotic self-similar solution. Con-
Thus, the eigenvalue is @ and the eigenfunction is stable if servation of energy, as a restriction on scaling, is ruled out.
a is positive.

[1] R. Grauer, C. Marliani, and K. Germaschewski, Phys. Rev. [7] J. M. Greene and O. N. Boratav, PhysicalD7, 57 (1997.

Lett. 80, 4177(1998. [8] J. T. Beale, T. Kato, and A. Majda, Commun. Math. PIg4.
[2]R. B. Pelz and Y. Gulak, Phys. Rev. Let79, 4998 61 (1985. 5

(1997). [9] J. Ne@s, M. Ruicka, and V. Ser, Acta Math. 176, 283
[3] R. B. Pelz, Phys. Rev. B5, 1617(1997). (1996.
[4] O. N. Boratav and R. B. Pelz, Phys. Fluifls2757(1994. [10] T-P. Tsai, Acta Ration. Mech. Anal43 29 (1998.
[5] R. M. Kerr, Phys. Fluids A5, 1725(1993. [11] P. Constantin, SIAM ReV36, 73 (1994).

[6] J. Leray, Acta Math63, 193 (1934. [12] Y. Pomeau, J. Plasma Physs, 407 (1996.



